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Abstract— onvolutive blind source separation (BSS) usually

encounters two difficulties – the filter indeterminacy in the

recovered sources and the relatively high computational load.

In this paper we propose an efficient method to convolutive BSS,

by dealing with these two issues. It consists of two stages, namely,

multichannel blind deconvolution (MBD) and learning the post-

filters with the minimum filter distortion (MFD) principle. We

present a computationally efficient approach to MBD in the first

stage: a vector autoregression (VAR) model is first fitted to the

data, admitting a closed-form solution and giving temporally

independent errors; traditional independent component analysis

(ICA) is then applied to these errors to produce the MBD results.

In the second stage, the least linear reconstruction error (LLRE)

constraint of the separation system, which was previously used

to regularize the solutions to nonlinear ICA, enforces a MFD

principle of the estimated mixing system for convolutive BSS.

One can then easily learn the post-filters to preserve the temporal

structure of the sources. We show that with this principle, each

recovered source is approximately the principal component of

the contributions of this source to all observations. Experimental

results on both synthetic data and real room recordings show

the good performance of this method.onvolutive blind source

separation (BSS) usually encounters two difficulties – the filter

indeterminacy in the recovered sources and the relatively high

computational load. In this paper we propose an efficient method

to convolutive BSS, by dealing with these two issues. It consists of

two stages, namely, multichannel blind deconvolution (MBD) and

learning the post-filters with the minimum filter distortion (MFD)

principle. We present a computationally efficient approach to

MBD in the first stage: a vector autoregression (VAR) model

is first fitted to the data, admitting a closed-form solution and

giving temporally independent errors; traditional independent

component analysis (ICA) is then applied to these errors to

produce the MBD results. In the second stage, the least linear

reconstruction error (LLRE) constraint of the separation system,

which was previously used to regularize the solutions to nonlinear

ICA, enforces a MFD principle of the estimated mixing system

for convolutive BSS. One can then easily learn the post-filters

to preserve the temporal structure of the sources. We show

that with this principle, each recovered source is approximately

the principal component of the contributions of this source to

all observations. Experimental results on both synthetic data

and real room recordings show the good performance of this

method.C
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1. INTRODUCTION

Blind source separation (BSS) aims to recover the origi-

nal sources from their observable mixtures with very little

knowledge of the mixing system and the sources. In many

scenarios, the original sources are approximately independent;

consequently, they can be recovered by the independent com-

ponent analysis (ICA) technique [1], [2], which transforms

the observed data to a set of outputs that are mutually as

independent as possible. In the basic ICA model, the mixing

system is linear and the number of observed signals is equal

to that of the original sources. In this case, under some weak

conditions, ICA can recover the sources with trivial scaling

and permutation indeterminacies [3].

However, for more complex mixing procedures, the re-

covered signals by enforcing statistical independence of the
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outputs may be different from the original sources. A typical

example is nonlinear ICA: it is well-known that solutions

to the general nonlinear ICA problem always exist and are

highly non-unique [4]. In this paper we are mainly concerned

with blind separation of convolutive mixtures, or convolutive

BSS (for a recent survey on convolutive BSS, one may

see [5]). Since statistical independence amongst a set of signals

remains if we apply a filter to each signal, solutions to this

problem have the filtering indeterminacy. Many time-domain

methods for this problem make the outputs both spatially and

temporally as independent as possible. Consequently, if the

original sources are not white, their time structures will be lost,

causing distortion in the recovered signals. Hence additional

information is needed to preserve the temporal informationof

the sources.

To make ICA result in BSS for the convolutive mix-

tures, we need to find some additional conditions besides

statistical independence. Usually the temporal structureof

the sources is approximately preserved in the convolutive

mixtures. Therefore, we prefer the independent output signals

whose corresponding mixing procedure is as close as possible

to a linear instantaneous one, i.e., the mixing procedure is

of minimal filter distortion (MFD). In this way the temporal

structure in the sources could be recovered. In light of this

simple idea, one can separate real room recordings with good

performance. Like the minimal nonlinear distortion (MND)

constraint for nonlinear ICA [6], MFD for convolutive BSS

can be implemented in a simple and convenient way: under the

condition that the outputs of the BSS system are independent,

we prefer the BSS system that has the least linear reconstruc-

tion error (LLRE). Moreover, since convolutive BSS usually

involves a large sample size and is computationally expensive,

especially when applied on speech signals, we also provide

a computationally appealing approach to multichannel blind

deconvolution (MBD), which is a major stage in the proposed

convolutive BSS method.

This paper is organized as follows. Section 2 discusses

how to enforce the LLRE constraint of a given BSS system.

This constraint is used to implement the MFD principle for

convolutive BSS in Section 3; related work is also discussed

there. Section 4 presents a convenient two-stage method,

which consists of an efficient MBD approach and learning

the post-filters with MFD, to achieve convolutive BSS with

MFD. Experimental results on both synthetic data and real

room recordings are given in Section 5.

2. BSS SYSTEM WITH THE LEAST L INEAR

RECONSTRUCTIONERROR

Here we assume that the sources to be recovered are

mutually independent, and consider a ICA-based BSS system.

Denote byx = (x1, ..., xM )T the vector of observed signals

and by y = (y1, ..., yN )T the vector of output signals of

the BSS system. In addition to the independence condition,

sometimes we expect the BSS system to have the least mean

squared deviation from its best-fitting linear approximation,

such that certain structure in the observations is approximately

preserved in the separation results. Denote byRMSE the mean

square error (MSE) of the best-fitting linear approximation,

or the LLRE, of the separation system. LetĂ be the affine

mapping which fits the transformation fromy to x best and let

x̆ = (x̆1, ..., x̆M )T be its output. Let̃y = [y; 1]. RMSE(θ),

where θ denotes the parameter set of the BSS system, can

then be written as the MSE betweenxi and x̆i:

RMSE(θ) = E{‖ x − x̆ ‖2} , where (1)

x̆ = Ăỹ, andĂ = argA min E{‖ x − Ay ‖2}

Here Ă is an M × (N + 1) matrix. If all components of

x and y are zero-mean, which is usually assumed in what

follows, x̆ can be obtained as̆x = Ăy instead, and herĕA

is an M × N matrix. The generating procedure ofRMSE is

depicted in Figure 1.

The derivative ofRMSE w.r.t. Ă is

∂RMSE

∂Ă
= −2E{(x − Ăỹ)ỹT }.

Setting this derivative to0 givesĂ:

E{(x − Ăỹ)ỹT } = 0 =⇒ Ă = E{xỹT }[E{ỹỹT }]−1.

We can see that̆A is obtained in closed form, which greatly

simplifies the expression for the LLRERMSE .



3

x1

xM

y1

yN

.

.

.

.

.

.

.

.

.

.

.

.
A*

x1*

xM*

v1 vM

  BSS
system

Fig. 1. Generating procedure ofRMSE (dashed line).RMSE =
P

M

i=1
E(v2

i
), wherevi = xi − x̆i. Here it is assumed thatx and y are

zero-mean; consequently̆x = Ăy andĂ is M × N .

RMSE can then be written as

RMSE = Tr
(
E{(x − Ăỹ)(x − Ăỹ)T }

)

= −Tr
(
E{ĂỹxT }

)
+ const

= −Tr
(
E{xỹT }[E{ỹỹT }]−1E{ỹxT }

)
+ const (2)

Since ICA makesyi independent from each other,yi are

uncorrelated. Moreover, we can easily makeyi zero-mean.

Consequently,E{ỹỹT } = diag{E(y2
1), E(y2

2), ..., E(y2
N ), 1},

andRMSE becomes

RMSE = −

M∑

j=1

N∑

i=1

E2(xjyi)

E(y2
i )

+ const (3)

In the update of the parameters, the gradient ofRMSE w.r.t.

θ is involved. DefineK = (K1, ...,KN )T , with Ki given by

Ki = 2

M∑

j=1

[E2(xjyi)

E2(y2
i )

yi −
E(xjyi)

E(y2
i )

xj

]
(4)

One can check that the gradient ofRMSE w.r.t. the parameter

θi would be ∂RMSE

∂θi
= E

(
KT · ∂y

∂θi

)
, where ∂y

∂θi
depends on

the separation system.

Recently, to alleviate the ill-posedness of nonlinear ICA,

nonlinear ICA with MND, implemented by regularizing the

nonlinear ICA system with the LLRE (Figure 1), was pro-

posed; for details, see [6], [7]. Here we are interested in the

use of RMSE for constraining the solutions of convolutive

BSS.

3. CONVOLUTIVE BSSWITH M INIMAL FILTER

DISTORTION

3.1. Convolutive BSS

In convolutive BSS, the observed datax(t) =

(x1(t), · · · , xM (t))T are assumed to be convolutive

mixtures of spatially independent stochastic sequences

si(t), i = 1, · · · , N . In matrix form, this generating

procedure ofx is described asx(t) =
∑

τ Bτs(t− τ), where

s(t) = (s1(t), · · · , sN (t))T . Or in the z-domain, it can be

written as

X (z) = B(z)S(z),

whereB(z) =
∑

Bτz−τ . Convolutive BSS aims to recover

the source signalssi(t) from the observed signalsxi(t).

Denote byW(z) the separation system. Its output isy(t) =
∑

τ Wτx(t − τ), or

Y(z) = W(z)X (z).

Here we assume thatN ≤ M and that bothB(z) and

W(z) are stable. Previous work shows that under certain

weak conditions, when the spatial independence between the

output sequencesyi(t) is achieved, the sourcessi(t) could be

recovered up to the filter and permutation indeterminacies.In

other words, the learnedW(z) satisfies

W(z)B(z) = PΛ(z), (5)

where P is an N × N permutation matrix andΛ(z) is a

diagonal matrix with each entry on its diagonal being a filter.

3.2. Incorporating Minimal Filter Distortion

The filter indeterminacy in convolutive BSS is analogous

to the trivial indeterminacy of nonlinear ICA: both of them

are caused by the fact that independence amongst a set of

variables does not change by component-wise transformations

of these variables. This indeterminacy is troublesome since it

may cause a strong distortion in the estimate of the sources.To

eliminate it, some schemes have been proposed. For example,

a feedback separation structure, instead of a feedforward one,

was adopted in [8].

Usually the temporal structures of the sources are approxi-

mately preserved in the convolutive mixtures. Therefore, under

the independence condition of the estimated sourcesyi(t), we

expect the transformation fromyi(t) to the observed mixtures

xi(t) to be as close as possible to a linear instantaneous one;

in this way the filter indeterminacy is eliminated. This is
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called the MFD principle of the mixing system. To achieve

MND, one just needs to minimizeRMSE , which is defined

in Eq. 1, when making the outputs of the separation system

spatially independent. After tedious derivations, one canfind

the relationship between the estimate ofsj(t) produced by

MFD and the contributions ofsj(t) to all observed signals

xi(t), as described by the following theorem, whose proof is

given in Appendix.

Theorem 1:Let bij(t) be the (i, j)th entry of the mixing

system Bt. Suppose that the sourcessi(t) are zero-mean

and that the separation systemW(z) satisfies Eq. 5 and has

enough freedom. Then when the MFD of the mixing system

is achieved, i.e.,RMSE defined in Eq 1 is minimized, the

separation result corresponding to the sourcesj is a scaled

version of the principal component (PC) of the contributions

of sj(t) to all observations, i.e.,[bij(t)∗sj(t)], i = 1, · · · ,M .

In fact, another “minimal distortion” principle [9]–[11] has

been incorporated for regularizing the separation systemW(z)

in the literature.1 Originally, in [9], the authors proposed to

achieve the minimal distortion of the separation system by

minimizing E{||yt − xt||
2}. It was later changed to

R̃MFD = E{||y(t) − Qx(t)||2, (6)

with the matrixQ pre-assigned [10]. In this method, the de-

termination ofQ requires certain prior knowledge. Moreover,

the functionR̃MFD is generally sensitive to the permutation

of yi(t), i.e., different permutations ofyi(t) may result in

different estimates of the same source. With this regularization

technique, the inherent permutation indeterminacy in the BSS

problem would have some random effects on the recovered

sources. Therefore, generally speaking, it would be betterto let

Q be the best-fitting linear transformation fromx(t) to y(t),

i.e., to useQ̆ = arg minQ R̃MFD instead, just like the way

1We would like to address that the “inverse minimal distortion”principle

given in [10] is essentially different from our MFD criterion: the “inverse

minimal distortion” principle minimizes the square error between the observed

mixturesx(t) and the reconstructed ones from the outputs with the pseudo-

inverse of the separation system,W†(z)y(t). Consequently, this principle

reduces the noise effect in the over-determined case (N < M ), and it has no

effect at all in the square case (N = M ), since it is always zero from any

invertibleW(z).

we find Ă in Section 2. In addition, minimization of̃RMFD

tends to make the variance of the outputsyi(t) smaller and

smaller.

Compared to the one exploiting̃RMFD given by Eq. 6 [10],

the proposed scheme to enforce the MFD principle has some

nice properties. Firstly, unlikẽRMFD, which is sensitive to

the matrix Q, RMSE (Eq. 1) is a faithful measure of the

filter distortion level. It is also insensitive to the scaling of

yi. Moreover, the result of the proposed scheme is insensitive

to the permutations ofxi(t). Secondly, using the proposed

scheme, we can easily incorporate any prior knowledge on the

filter distortion level of the generating procedure of eachxi(t).

For instance, if we believe that the distortion in a particular ob-

servationxk(t) w.r.t. the original sources caused by the mixing

filters is significant, we may reduce the variance ofxk(t) in

RMSE or even drop it, to reduce the effect ofxk(t). Thirdly,

whenM > N , the proposed scheme also enforces a minimal

energy loss of the separation system, such that the sources

which contribute more to the observations would be easier to

be recovered. Finally, as shown in Subsection 4, convolutive

BSS with MFD could not be achieved by regularizing MBD

with the MFD condition; we will propose a simple two-stage

procedure to do so.

A natural way to implement convolutive BSS with MFD is

to adopt the mutual information minimization method [12]

with MFD for regularization. Minimization of mutual in-

formation between the output sequences makes the outputs

spatially independent, and MFD helps to preserve the temporal

information of the sources. Unfortunately, the mutual informa-

tion minimization method for convolutive BSS involved the

estimation of some variants of the joint densities, which is

computationally expensive and is not suitable when the data

dimension is high [12]. Below we present an efficient two-

stage procedure to perform convolutive BSS by combining a

computationally appealing MBD approach and MFD.

4. BY A TWO-STAGE METHOD

MBD using information maximization [8], [13] or the

natural gradient [14], [15] is much easier to do and involves
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lower computational loads than convolutive BSS. Unlike con-

volutive BSS, MBD makes the output sequences both spatially

and temporally independent, and it does not have the filter

indeterminacy. One should note thatconvolutive BSS with

MFD could not be achieved by regularizing MBD with MFD–

If we use the MFD to regularize the results of MBD, in order

to avoid the temporal whitening effect, the regularizationpa-

rameter must be large; a large regularization parameter would

make the mixing system too close to a linear instantaneous

transformation such that the spatial independence between

output sequences may be violated.

However, we can achieve convolutive BSS by combining

MBD and MFD in two separate stages. In the first stage

we perform multichannel blind deconvolution onx(t). In-

spired by the method for analyzing Granger causality with

instantaneous effects [16], below we will propose a com-

putationally very appealing approach to MBD. Denote by

ỹ(t) = (ỹ1(t), · · · , ỹN (t))T the output of multichannel blind

deconvolution. The expected outputs of convolutive BSS,

yi(t), are a filtered version of̃yi(t), i.e.,yi(t) = ei(t)∗ỹi(t) =
∑

τ ei(τ) · ỹi(t − τ), whereei(t) can be considered as post-

filters. In the second stage, one can determine these post-filters

by making use of the MFD principle. Below we discuss these

two stages in detail.

4.1. Stage 1 – VAR-ICA: An Efficient Approach to

MBD

MBD of speech signals usually involves quite a lot of

samples and parameters. Hence, a MBD algorithm is ex-

pected to be computationally efficient in practice. However,

traditionally, in the MBD procedure, all parameters are tuned

simultaneously, making the learning speed rather slow. Be-

low we propose a simple and efficient approach to MBD,

by combining the vector autoregression (VAR) model and

instantaneous ICA. VAR transforms the mixtures to the error

series which are temporally as independent as possible, and

ICA further makes them instantaneously as independent as

possible; as a consequence, the final outputs are independent

both spatially and temporally.

Suppose that causal and minimum-phase finite impulse

response (FIR) filters with a suitable length are used for MBD;

the corresponding mixing system would be causal, stable, and

minimum-phase. The MBD problem can be formulated as

ỹ(t) =

L∑

τ=0

W̃τ · x(t − τ), (7)

whereỹ(t) = (ỹ1(t), ..., ỹN (t))T are spatially and temporally

as independent as possible. Here for simplicity we have

assumed that the source numberN and the observation number

M are equal and that the data are zero-mean. Eq. 7 can be

re-written as

W̃0x(t) = −

L∑

τ=1

W̃τx(t − τ) + ỹ(t)

⇒ x(t) = −

L∑

τ=1

W̃−1
0 W̃τx(t − τ) + W̃−1

0 ỹ(t)

⇒ x(t) = −

L∑

τ=1

Mτx(t − τ) + ǫ(t), (8)

where

Mτ , W̃−1
0 W̃τ , andǫ(t) , W̃−1

0 ỹ(t). (9)

As ỹ(t) are assumed to be spatially and temporally indepen-

dent, the errorsǫ(t), as a linear instantaneous transformation

of y(t), are temporally independent. Thus Eq. 8 is exactly

a vector autoregression (VAR) model, and all parameters

involved in Eq. 8 can be conveniently estimated by multivariate

least squares (MLS) [17]. In this step we implicitly assumed

that the data are normally distributed, but the estimator is

consistent in the statistical asymptotic sense. Moreover,Mτ in

Eq. 8 are estimated in closed form, rather than in an iterative

manner, so this step involves light computational loads, and

there are no local optimum issues.

Once we obtain the estimate ofMτ , the errorsǫ(t) are

easily constructed. Asǫ(t) are a linear instantaneous mixture

of the independent signals̃yi(t), by applying traditional ICA to

the estimate ofǫ(t), one can find the estimate of̃W0 andỹ(t)

in Eq. 9. In our implementation, FastICA [18] is adopted. If

needed, all̃Wτ can then be estimated by making use of Eq. 9.

Finally, MBD is achieved in the two separate steps given

above, and both steps are computationally attractive. As the
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MBD algorithm consists of two separate steps, the estimate of

the parameters may not be statistically efficient; however,in

practice it would not be a serious problem since we usually

have a large number of samples for MBD.

4.2. Stage 2 – Learning the Post-Filters by Enforc-

ing MFD

In the second stage, we need to find the post-filtersei(τ),

i = 1, ..., N , using the MFD principle. The choice of the form

and order of the filtersei(τ) depends on the auto-correlation

properties of the sources. Here we letei(τ) be finite impulse

response (FIR) filters.

The learning rule forei(τ) can be derived by minimizing

the linear reconstruction errorRMSE (Eq. 3). Notingyi(t) =

ei(t) ∗ ỹi(t), we have

∂RMSE

∂ei(τ)
= Et{Ki(t) · ỹi(t − τ)} (10)

whereKi(t) is defined in Eq. 4 (the only difference is thatKi

in Eq. 4 does not have the time indext). In this way, MFD

provides a method to learn the post-filters in convolutive BSS.

We can easily find a rough estimate forei(τ), which can

be used for initializing the gradient-based method (Eq. 10).

ỹi(t), the outputs of MBD, have been estimated in the first

stage. For simplicity, we assume thatỹi(t) have been made of

unit variance. Let us find the filtersei(τ) such thatyi(t) =

ei(t) ∗ ỹi(t) can best reconstruct a particular observation,

denoted byxk(t), instead of all observations, with a linear

instantaneous transformation. That is, we aim to minimize

Rk = Et{||xk(t)−ăT y(t)||2} = {||xk(t)−
∑N

j=1 ăjyj(t)||
2},

whereă = arga min Et{||xk(t)−aT y(t)||2} . Without loss of

generality, we absorb̆aj into ej(τ), or equivalently set̆aj = 1.

The minimum is achived when∂Rk

ei(τ) = 0, i.e.,

Et

{(
xk(t) −

N∑

j=1

[ej(t) ∗ ỹj(t)]
)
· ỹi(t − τ)

}
= 0.

Bearing in mind that̃yj(t) are spatially and temporally ap-

proximately independent, finally we can see

ei(τ) = Et{xk(t)ỹi(t − τ)},

which is very easy to calculate. One can then use Eq. 10 to

refine the result if needed.

The MATLAB source code implementing the proposed

two-stage method for convolutive BSS is available at

http://www.cs.helsinki.fi/u/kunzhang/cbssmfd.html. In prac-

tice this method is very fast; we found that it takes about

20 seconds to separate two sources with1.2×105 samples on

a 2.0GHz PC, with the filter length of about 1000.

5. EXPERIMENTS

To illustrate the performance of the proposed method for

convolutive BSS with MFD, we report some experimental

results on the separation of convolutive mixtures of speech

signals. The two-stage method given in Section 4 was used,

and in the first stage, to do MBD, the proposed VAR-ICA

approach was adopted. We used both the signal-to-interference

ratio (SIR) and the signal-to-noise ratio (SNR) to measure the

separation performance. Suppose thatyi provides the estimate

of si. Its SIR is defined as SIRi = 10 log10

E{y2

i |sj=0,∀j 6=i}

E{y2

i
|si=0}

,

where yi|sj=0 stands for what is at thei-th output, when

the sourcesj(t) is zero, soyi|si=0 is the interference at

the i-th output caused by other sources. A high SIR means

that the corresponding source is recovered up to the filter

indeterminacy with good performance. In addition, considering

the recovered signalyi(t) as a sum of a scaled version of

the original sourcesi(t) and some noise, we can define the

SNR of the ith channel. A high SNR means that both the

interference of other sources and the distortion caused by the

filter indeterminacy are small.

5.1. On Artificially Mixed Convolutive Mixtures

We first used the artificially mixed convolutive mixtures of

speech signals. The three source speech signals, as well as the

magnitude of their Fourier transforms, are shown in Figure 2.

Each signal has 9000 samples. Each entry of the convolutive

mixing systemB(z) has a length of 60, and it was generated

randomly from the uniform distributionU(−c, c). To make

B(z) tend to be invertible by a causal system, we decreasedc
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as the time lag increases. The convolutive mixtures, together

with their Fourier transforms, are shown in Figure 3.
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Fig. 2. Sources used for blind separation of convolutive mixtures with MFD.

Left: sources. Right: magnitude of their Fourier transforms.
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Fig. 3. Convolutive mixtures. Left: mixtures. Right: magnitude of their

Fourier transforms.

We adopted the two-stage method given in Section 4 for

source separation. Each entry of the deconvolution system

W(z) has a length of 101. The MBD results̃yi(t) produced

by the first stage are shown in Figure 4. From their Fourier

transforms, we can see thatỹi(t) are approximately white.

In the second stage, we then applied the post-filtersei(t) to

reduce the temporal distortion in the outputs. We adopted FIR

filters with the length 200 forei(t). ei(t) were learned using

the rule Eq. 10. The final outputsyi(t) = ei(t) ∗ ỹi(t) are

given in Figure 5. Comparing their Fourier transforms as well

as their waveforms to those of the original sources shown in

Figure 2, one can see that the temporal structure of the sources

is approximately recovered.
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Fig. 4. Results of MBD by VAR-ICA (Subsection 4.1). Left: recovered

sources. Right: magnitude of their Fourier transforms. Corresponding SIR’s

are22.84dB, 20.49dB, and19.75dB, respectively.

2000 4000 6000 8000

−5

0

5

y 1

2000 4000 6000 8000
−4
−2

0
2
4

y 2

2000 4000 6000 8000
−5

0

5

y 3

time

0 1 2 3
0

100

200

300

0 1 2 3
0

200

400

0 1 2 3
0

100

200

300

Ω (rad)

Fig. 5. Recovered sources by convolutive BSS with MFD. Left:recovered

sources. Right: magnitude of their Fourier transforms.

The SIR’s in the three channels are22.84dB, 20.49dB, and

19.75dB, respectively, meaning that each source is recovered

with very little interference from others. Figure 6 (left) shows

the scatter plot of each recovered sourceyj(t) versus the

PC of [bij(t) ∗ sj(t)] (i = 1, 2, 3), the contributions of the

corresponding source to all observations. It is almost a straight
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line. The SNR’s ofyi(t) w.r.t. the corresponding PC’s are

15.89dB, 17.44dB, and17.18dB, respectively, which are very

high. This is consistent with Theorem 1, which states that the

recovered sources with MFD are approximately the PC’s of

their contributions to all observations. Figure 6 (right) plots

the scatter plot ofyi(t) versus the original sourcesi(t). The

SNR’s of yi(t) w.r.t. si(t) in the three channels are7.39dB,

13.35dB, and7.60dB, respectively.
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Fig. 6. Scatter plot of each recovered source by convolutiveBSS with MFD

versus the PC of the contributions of the source, as well as the original source.

Left: recovered source versus the PC of the contributions ofthe original source

to all mixtures. Corresponding SNR’s are15.89dB, 17.44dB, and17.18dB,

respectively. Right: recovered source versus the originalone. Corresponding

SNR’s are7.39dB, 13.35dB, and7.60dB, respectively.

For comparison, we also used Parra & Spence’s method [19]

to separate the convolutive mixtures.2 This method exploits

the inherent non-stationarity of the acoustic sources and uses

cross-correlations at multiple times for separation. As men-

tioned in a recent survey of convolutive BSS methods [5], it

gives comparatively good performance for real room record-

ings. The SIR’s of the outputs produced by this method are

2Thanks to Stefan Harmeling for sharing the MATLAB source code.

12.43dB, 14.12dB, and13.66dB, respectively, which are lower

than those produced by the two-stage method. To see if the

temporal structure of the sources is preserved, we give the

scatter plot of each recovered signal versus the PC’s of the

corresponding source to the observations (just shown for com-

pleteness) and the original source; see Figure 7. The original

sources are recovered with the SNR’s5.06dB, 7.96dB, and

7.50dB, respectively. Compared to the two-stage method, in

this experiment this method caused larger temporal distortion

in the recovered sources.
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Fig. 7. Scatter plot of each recovered source by Parra & Spence’s method

[19] versus the PC of the contributions of the source and the original source.

SIR’s in the three channels are12.43dB, 14.12dB, and13.66dB, respectively.

Left: recovered source versus the PC of the contributions ofthe corresponding

source to all mixtures. Corresponding SNR’s are12.43dB, 14.12dB, and

13.66dB, respectively. Right: recovered source versus the original one.

Corresponding SNR’s are5.06dB, 7.96dB, and7.50dB, respectively.

5.2. On Real Room Recordings

Thanks to the computational efficiency, the proposed two-

stage method for convolutive BSS can be applied to relatively

large scale problems. We applied this method to the various
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mixture signals recorded by Lee et al.3 For real room record-

ings, the SNR is not measurable due to the unavailability

of the original individual speech or music signals. One can

evaluate the results by listening to the separated signals.4

When listening, one needs to pay attention to two aspects:

the quality of the separation between different sources and

the sound quality of each recovered source. One can see that

the original signals are successfully recovered, and that the

separation results are clearly better than, or at least as good

as, those separated by [20] and [21], especially for the sound

quality (indicating the temporal distortion in the estimated

sources).

6. CONCLUSION

In this paper we considered the problem of convolutive BSS,

and proposed the minimal filter distortion (MFD) principle

to avoid the filter indeterminacy in the output and improve

the separation results. MFD makes the filter distortion in

the estimated mixing procedure as weak as possible, and is

implemented by the least linear reconstruction error constraint

of the separation system. We showed that the recovered source

with this principle is approximately the principal component

of the contributions of this source to all observations. We

gave a two-stage method for convolutive BSS by combining

multichannel blind deconvolution and MFD. In particular, as

speech signals usually have a large sample size, we proposed

a computationally very efficient two-step approach to perform

multichannel blind deconvolution in the first stage. The two-

stage method for convolutive BSS is computationally appeal-

ing, and its good performance has been demonstrated on both

synthetic data and real room recordings.

APPENDIX: PROOF OFTHEOREM 1

Proof: We first present the following lemma, as it will

be used in the proof.

3available at

http://www.cnl.salk.edu/˜tewon/Blind/blind audio.html .
4The separated results by our method, as well as the MATLAB source code,

are available at

http://www.cs.helsinki.fi/u/kunzhang/cbss mfd.html .

Lemma 1:Suppose we are given the random vectord =

(d1, d2, · · · , dn)T . Let Ry be the mean square error of re-

constructingd from the variabley with the best-fitting linear

transformation, i.e.,Ry = mina E{||d− a · y||2}, wherea =

(a1, a2, · · · , an)T . The variabley which gives the minimum

Ry is a scaled version of the non-centered principal component

(PC) ofd, and ify is constrained to be zero-mean, it is a scaled

version of the PC ofd.

The proof is given in [6]. Note that this lemma is not straight-

forward. In fact, compared to the definition of PCA [22], here

y is not constrained to be a linear combination ofdi, although

finally it turns out to be so.

Now we are ready to prove Theorem 1. SinceW(z) satisfies

Eq. 5, we can denote byιj(t)∗sj(t) the estimate ofsj(t). Let

ăij denote the(i, j)th entry ofĂ. RMSE defined in Eq 1 is

RMSE

=
∑

i

Et

{
xi(t) −

∑

j

ăij · [ιj(t) ∗ sj(t)]
}2

=
∑

i

Et

{∑

j

[
[bij(t) ∗ sj(t)] − ăij · [ιj(t) ∗ sj(t)]

]}2

=
∑

i

{∑

j

Et

(
[bij(t) ∗ sj(t)] − ăij · [ιj(t) ∗ sj(t)]

)2

+
∑

k 6=l

Et

[(
[bik(t) ∗ sk(t)] − ăik · [ιj(t) ∗ sk(t)]

)

·
(
[bil(t) ∗ sl(t)] − ăil · [ιj(t) ∗ sl(t)]

)]}
.

As sj(t) are zero-mean spatially independent stochastic

sequences, the above equation further becomes

RMSE =
∑

i

∑

j

E
(
[bij(t) ∗ sj(t)] − ăij · [ιj(t) ∗ sj(t)]

)2
.

As W(z) has enough freedom,ιj(t) also has enough freedom.

Consequently, according to Lemma 1, whenιj(t) minimizes

RMSE , one can see that[ιj(t) ∗ sj(t)] is the PC of[bij(t) ∗

sj(t)], i = 1, · · · ,M , multiplied by a constant.
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