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Abstract— onvolutive blind source separation (BSS) usually produce the MBD results. In the second stage, the least linear
encounters two difficulties — the filter indeterminacy in the reconstruction error (LLRE) constraint of the separation system,
recovered sources and the relatively high computational load. which was previously used to regularize the solutions to nonlinear
In this paper we propose an efficient method to convolutive BSS, ICA, enforces a MFD principle of the estimated mixing system

by dealing with these two issues. It consists of two stages, namelyfor convolutive BSS. One can then easily learn the post-filters

multichannel blind deconvolution (MBD) and learning the post-
filters with the minimum filter distortion (MFD) principle. We

present a computationally efficient approach to MBD in the first
stage: a vector autoregression (VAR) model is first fitted to the
data, admitting a closed-form solution and giving temporally
independent errors; traditional independent component analysis

to preserve the temporal structure of the sources. We show
that with this principle, each recovered source is approximately
the principal component of the contributions of this source to
all observations. Experimental results on both synthetic data
and real room recordings show the good performance of this
method.C

(ICA) is then applied to these errors to produce the MBD results.

Keywords— Independent component analysis, Convolutive

In the second stage, the least linear reconstruction error (LLRE blind source separation, Least linear reconstruction error, Vecor

constraint of the separation system, which was previously used .
autoregression

to regularize the solutions to nonlinear ICA, enforces a MFD

principle of the estimated mixing system for convolutive BSS. 1. INTRODUCTION

One can then easily learn the post-filters to preserve the tempota

structure of the sources. We show that with this principle, each ~ Blind source separation (BSS) aims to recover the origi-

recovered source is approximately the principal component of nal sources from their observable mixtures with very little

the contributions of this source to all observations. Experimenth knowledge of the mixing system and the sources. In many

results on both synthetic data and real room recordings show . _ . .
) _ _ scenarios, the original sources are approximately indigren

the good performance of this method.onvolutive blind source )

separation (BSS) usually encounters two difficulties — the filter consequently, they can be recovered by the independent com-

indeterminacy in the recovered sources and the relatively high Ponent analysis (ICA) technique [1], [2], which transforms

computational load. In this paper we propose an efficient method the observed data to a set of outputs that are mutually as

to convolutive BSS, by dealing with these two issues. It consists Ofindependent as possible. In the basic ICA model, the mixing

two stages, namely, multichannel blind deconvolution (MBD) and - . .
system is linear and the number of observed signals is equal

learning the post-filters with the minimum filter distortion (MFD) o )

. . - to that of the original sources. In this case, under some weak

principle. We present a computationally efficient approach to

is first fitted to the data, admitting a closed-form solution and and permutation indeterminacies [3].
giving temporally independent errors; traditional independent However, for more complex mixing procedures, the re-

component analysis (ICA) is then applied to these erors to covered signals by enforcing statistical independencehef t



outputs may be different from the original sources. A typicaonvolutive BSS in Section 3; related work is also discussed

example is nonlinear ICA: it is well-known that solutionghere. Section 4 presents a convenient two-stage method,

to the general nonlinear ICA problem always exist and awehich consists of an efficient MBD approach and learning

highly non-unique [4]. In this paper we are mainly concerneitie post-filters with MFD, to achieve convolutive BSS with

with blind separation of convolutive mixtures, or convatet MFD. Experimental results on both synthetic data and real

BSS (for a recent survey on convolutive BSS, one magom recordings are given in Section 5.

see [5]). Since statistical independence amongst a sejrudlsi

remains if we apply a filter to each signal, solutions to this 2. BSS ISTEM WITH THE LEAST LINEAR

problem have the filtering indeterminacy. Many time-domain RECONSTRUCTIONERROR

methods for this problem make the outputs both spatially andHere we assume that the sources to be recovered are

temporally as independent as possible. Consequently,eif timutually independent, and consider a ICA-based BSS system.

original sources are not white, their time structures welldst, Denote byx = (z1,...,23,)7 the vector of observed signals

causing distortion in the recovered signals. Hence additio and byy = (y1,...,yn)? the vector of output signals of

information is needed to preserve the temporal informatibn the BSS system. In addition to the independence condition,

the sources. sometimes we expect the BSS system to have the least mean
To make ICA result in BSS for the convolutive mix-squared deviation from its best-fitting linear approxiroafi

tures, we need to find some additional conditions besidesch that certain structure in the observations is appratdiy

statistical independence. Usually the temporal structire preserved in the separation results. Denotéhys r the mean

the sources is approximately preserved in the convolutisguare error (MSE) of the best-fitting linear approximation

mixtures. Therefore, we prefer the independent outputadignor the LLRE, of the separation system. LAt be the affine

whose corresponding mixing procedure is as close as pessimlapping which fits the transformation fromto x best and let

to a linear instantaneous one, i.e., the mixing proceduresis= (7,...,4y)7 be its output. Lety = [y;1]. Rarse(0),

of minimal filter distortion (MFD). In this way the temporalwhere 8 denotes the parameter set of the BSS system, can

structure in the sources could be recovered. In light of thiken be written as the MSE betweep and z;:

simple idea, one can separate real room recordings with good

RAISE(O) = E{H X—X HQ} , where (1)

performance. Like the minimal nonlinear distortion (MND) o y
x = Ay, andA = arg, min E{|| x — Ay ||?}
constraint for nonlinear ICA [6], MFD for convolutive BSS

can be implemented in a simple and convenient way: under g€ A is an M x (N + 1) matrix. If all components of

condition that the outputs of the BSS system are independéht@"d y are zero-mean, which is usually assumed in what

we prefer the BSS system that has the least linear reconst{@UOWs, X can be obtained a8 = Ay instead, and heré,

tion error (LLRE). Moreover, since convolutive BSS usuallyS @14/ > NV-matrix. The generating procedure ffi/sp is

involves a large sample size and is computationally expensidepicted in Figure 1.

especially when applied on speech signals, we also provide! € derivative ofRarsp wrt. A is

a computationally appealing approach to multichanneldblin % = —2F{(x— Ay)y"}.
deconvolution (MBD), which is a major stage in the proposed _ . . o . <
( ) J 9 prop gettmg this derivative t® gives A
convolutive BSS method.
Ao TV A ~T ~oT—1
This paper is organized as follows. Section 2 discussesE{(X_AY)y }=0= A=E{xy }E{y )
how to enforce the LLRE constraint of a given BSS systeriVe can see thaA is obtained in closed form, which greatly

This constraint is used to implement the MFD principle fosimplifies the expression for the LLRE ;5.



Xl —@———> BSS VY1 mixtures of spatially independent stochastic sequences

m——o—> system __,_,yN si(t), ¢ = 1,---,N. In matrix form, this generating
é< _____ Xl ----------- - , procedure ofk is described ax(t) = > _B,s(t — ), where
L XMA< s(t) = (s1(t),---,sn(t))T. Or in the z-domain, it can be
vf w written as
X(z) = B(2)5(2),
Fig. 1. Generating procedure oR);sg (dashed line).Ry;sg =

SM . E(w?), wherev; = x; — &;. Here it is assumed that andy are WhereB(z) = > B,z 7. Convolutive BSS aims to recover

zero-mean; consequenty= Ay and A is M x N . the source signals;(t) from the observed signals;(t).

Denote byW(z) the separation system. Its outputyiét) =

Ryrse can then be written as
>, W x(t—1), or

Ruyse = Tr(E{(x — Ay)(x— AS’)T})

= —Tr(E{Ayx"}) + const

Here we assume thaV < M and that bothB and
= —Tr(E{xy" }E{yy"}] 'E{yx"}) + const (2) - 2)
W(z) are stable. Previous work shows that under certain

Since ICA makesy; independent from each othey; are weak conditions, when the spatial independence between the

uncorrelated. Moreover, we can easily makezero-mean. output sequences (¢) is achieved, the sources(t) could be

STy Hi 2 2 2
Consequently£{yy" } = diag{E(y7), E(y2), - E(yn). 1} recovered up to the filter and permutation indeterminadies.

and Ry sp becomes other words, the learneld(z) satisfies

Ryse == ) EE((m’;;) + const (3) W(2)B(z) = PA(2), Q)

In the update of the parameters, the gradienfefss W.r.t. where P is an N x N permutation matrix andA(z) is a
6 is involved. DefineK = (K,..., Kx)", with K; given by diagonal matrix with each entry on its diagonal being a filter

M

E*(zjyi)  E(xy:)
Ki=2) Ll — — e 4)
i 27,2 Vi 2y L

=1 [ E2(y7) E(y7) }

One can check that the gradient®f;sg w.r.t. the parameter

) ORysE T, 9y 9y
0; would be “se — E(K 801_), where 5% depends on

3.2. Incorporating Minimal Filter Distortion

The filter indeterminacy in convolutive BSS is analogous

to the trivial indeterminacy of nonlinear ICA: both of them

the separation system. are caused by the fact that independence amongst a set of

Recently, to alleviate the ill-posedness of nonlinear ICA, . . .
Y P Variables does not change by component-wise transfornsatio

nonlinear ICA with MND, implemented by regularizing theof these variables. This indeterminacy is troublesomeesihc

nonlinear ICA m with the LLRE (Figure 1), w ro- . . .
onlinear ICA syste th the (Figure 1), was pomaycauseastrong distortion in the estimate of the soufoes.

; for il 7]. Here we are interested @ th,. . .
posed; for details, see [6], [7]. Here we are interested & eliminate it, some schemes have been proposed. For example,

use of Ry;sg for constraining the solutions of convolutive
BSS.

a feedback separation structure, instead of a feedforwaed o
was adopted in [8].
Usually the temporal structures of the sources are approxi-

3. CONVOLUTIVE BSSWITH MINIMAL FILTER
mately preserved in the convolutive mixtures. Therefornglan

DISTORTION _ - _
the independence condition of the estimated souyges, we
3.1. Convolutive BSS expect the transformation from () to the observed mixtures
In convolutive BSS, the observed datx(t) = x;(t)to be as close as possible to a linear instantaneous one;

(x1(t),-- ,xp ()T are assumed to be convolutiven this way the filter indeterminacy is eliminated. This is



called the MFD principle of the mixing system. To achieveve find A in Section 2. In addition, minimization aRarrp
MND, one just needs to minimiz&,,sg, which is defined tends to make the variance of the outpytst) smaller and

in Eg. 1, when making the outputs of the separation systesmaller.

spatially independent. After tedious derivations, one fiad Compared to the one exploitin@, 7 given by Eq. 6 [10],

the relationship between the estimate 9f¢) produced by the proposed scheme to enforce the MFD principle has some
MFD and the contributions of;() to all observed signals nice properties. Firstly, unlike?y,rp, which is sensitive to
x;(t), as described by the following theorem, whose proof the matrix Q, Ryse (EQ. 1) is a faithful measure of the
given in Appendix. filter distortion level. It is also insensitive to the scaiiof

Theorem 1:Let b;;(t) be the ,j)th entry of the mixing y,. Moreover, the result of the proposed scheme is insensitive
system B;. Suppose that the sources(t) are zero-mean to the permutations of;(¢). Secondly, using the proposed
and that the separation systemi(z) satisfies Eq. 5 and hasscheme, we can easily incorporate any prior knowledge on the
enough freedom. Then when the MFD of the mixing systefilter distortion level of the generating procedure of eacft).
is achieved, i.e. Ry sp defined in Eq 1 is minimized, the For instance, if we believe that the distortion in a paraeub-
separation result corresponding to the sousgds a scaled servationey(t) w.r.t. the original sources caused by the mixing
version of the principal component (PC) of the contribusiorfilters is significant, we may reduce the variancexgft) in
of s;(t) to all observations, i.e[b;;(t)*s;(t)],i=1,--- ,M. Rysg Or even drop it, to reduce the effect of (¢). Thirdly,

In fact, another “minimal distortion” principle [9]-[11]ds when M > N, the proposed scheme also enforces a minimal
been incorporated for regularizing the separation sy$téfn) energy loss of the separation system, such that the sources
in the literature: Originally, in [9], the authors proposed towhich contribute more to the observations would be easier to
achieve the minimal distortion of the separation system Ie recovered. Finally, as shown in Subsection 4, conva@utiv
minimizing E{||y: — x||*}. It was later changed to BSS with MFD could not be achieved by regularizing MBD

B = E{|ly(#) — Qx(0)||2, ©) with the MFD condition; we will propose a simple two-stage

procedure to do so.

with the matrixQ pre-assigned [10]. In this method, the de- A natural way to implement convolutive BSS with MFD is

termination ofQ requir rtain prior knowl . Moreover . . L
€ ation ofQ requires certain prior knowledge. Moreo “to adopt the mutual information minimization method [12]

the function Ry rp is generally sensitive to the permutanonwith MFD for regularization. Minimization of mutual in-

of yi(t), i.e., different permutations of;(t) may result in formation between the output sequences makes the outputs

different estimates of the same source. With this regldtion spatially independent, and MED helps to preserve the teahpor

technique, the inherent permutation indeterminacy in 58 information of the sources. Unfortunately, the mutual infa-

problem would have some random effects on the recovert?gn minimization method for convolutive BSS involved the

sources. Therefore, generally speaking, it would be bttt estimation of some variants of the joint densities, which is

Q be the best-fitting linear transformation frasit) to y(t), computationally expensive and is not suitable when the data

€., 10 useQ = argming Rarp instead, just like the way dimension is high [12]. Below we present an efficient two-

We would like to address that the “inverse minimal distortigminciple stage procedure to perform convolutive BSS by combining a
given in [10] is essentially different from our MFD criteriothe “inverse . .
minimal distortion” principle minimizes the square error betwehe observed computationally appealing MBD approach and MFD.

mixturesx(¢) and the reconstructed ones from the outputs with the pseudo-
inverse of the separation systei/’(z)y(t). Consequently, this principle 4. By A TWO-STAGE METHOD

reduces the noise effect in the over-determined case<()M), and it has no

effect at all in the square casé&/'(= M), since it is always zero from any MBD using information maximization [8]’ [13] or the

invertible W(z). natural gradient [14], [15] is much easier to do and involves



lower computational loads than convolutive BSS. Unlike-con Suppose that causal and minimum-phase finite impulse
volutive BSS, MBD makes the output sequences both spatiatsponse (FIR) filters with a suitable length are used for MBD
and temporally independent, and it does not have the filtdte corresponding mixing system would be causal, stabbk, an
indeterminacy. One should note thabnvolutive BSS with minimum-phase. The MBD problem can be formulated as
MFD could not be achieved by regularizing MBD with MFD L

If we use the MFD to regularize the results of MBD, in order yit) = ;WT x(t-7), 0
to avoid the temporal whitening effect, the regularizatpa: wherey (t) = (j1(), ..., jn(t))T are spatially and temporally
rameter must be large; a large regularization parametetdwouy g independent as possible. Here for simplicity we have
make the mixing system too close to a linear instantaneoyssmed that the source numbeand the observation number

transformation such that the spatial independence betwegn .o equal and that the data are zero-mean. Eq. 7 can be

output sequences may be violated. re-written as

However, we can achieve convolutive BSS by combining o L
MBD and MFD in two separate stages. In the first stage Wox(t) = _wax(t_T) +¥(t)
T=1
we perform multichannel blind deconvolution at(t). In- Lo N
__ —1 _ —1s

spired by the method for analyzing Granger causality with x(t) = ;WO Wox(t —7) + Wi y(t)
instantaneous effects [16], below we will propose a com- L

_ , = x(t)=-) M.x(t—7)+e(t), (8)
putationally very appealing approach to MBD. Denote by o
y(t) = (G1(t),--- ,yn(t))T the output of multichannel blind where
deconvolution. The expected outputs of convolutive BSS, L —

M, 2 W;'W,, ande(t) 2 W, ly(t). 9)

yi(t), are a filtered version @j; (t), i.e.,y;(t) = e;(t)xg;(t) =
>, ei(r) - 9:(t — ), wheree;(t) can be considered as post- Asy(t) are assumed to be spatially and temporally indepen-
filters. In the second stage, one can determine these pessfildent, the errorg(¢), as a linear instantaneous transformation
by making use of the MFD principle. Below we discuss thes# y(t¢), are temporally independent. Thus Eq. 8 is exactly
two stages in detail. a vector autoregression (VAR) model, and all parameters
involved in Eq. 8 can be conveniently estimated by multaveri
4.1. Stage 1 — VAR-ICA: An Efficient Approach tIgast squares (MLS) [17]. In this step we implicitly assumed
MBD that the data are normally distributed, but the estimator is
MBD of speech signals usually involves quite a lot ofonsistent in the statistical asymptotic sense. Moredvgr,in
samples and parameters. Hence, a MBD algorithm is dx¢. 8 are estimated in closed form, rather than in an iterativ
pected to be computationally efficient in practice. Howevemanner, so this step involves light computational loadsl an
traditionally, in the MBD procedure, all parameters areetlin there are no local optimum issues.
simultaneously, making the learning speed rather slow. Be-Once we obtain the estimate ®fl,, the errorse(t) are
low we propose a simple and efficient approach to MBDgasily constructed. As(¢) are a linear instantaneous mixture
by combining the vector autoregression (VAR) model anaf the independent signals(t), by applying traditional ICA to
instantaneous ICA. VAR transforms the mixtures to the errtine estimate o€(¢), one can find the estimate W, andy(t)
series which are temporally as independent as possible, amdeg. 9. In our implementation, FastlICA [18] is adopted. If
ICA further makes them instantaneously as independent reeeded, aIWT can then be estimated by making use of Eq. 9.
possible; as a consequence, the final outputs are indepgendefinally, MBD is achieved in the two separate steps given

both spatially and temporally. above, and both steps are computationally attractive. &s th



MBD algorithm consists of two separate steps, the estimiatewhich is very easy to calculate. One can then use Eq. 10 to

the parameters may not be statistically efficient; howeiver, refine the result if needed.

practice it would not be a serious problem since we usually The MATLAB source code implementing the proposed

have a large number of samples for MBD. two-stage method for convolutive BSS is available at
http://www.cs.helsinki.fi/u/kunzhang/chssfd.html. In prac-

4.2. Stage 2 — Learning the Post-Filters by Enforéi_ce this method is very fast; we found that it takes about

. 20 seconds to separate two sources Withx 10°> samples on
ing MFD
a 2.0GHz PC, with the filter length of about 1000.
In the second stage, we need to find the post-filtg(s),
i1 =1,...,N, using the MFD principle. The choice of the form 5. EXPERIMENTS
and order of the filterg;(r) depends on the auto-correlation

properties of the sources. Here we detr) be finite impulse To illustrate the performance of the proposed method for

response (FIR) filters. convolutive BSS with MFD, we report some experimental

The learning rule fore;(r) can be derived by minimizing results on the separation of convolutive mixtures of speech

signals. The two-stage method given in Section 4 was used,

and in the first stage, to do MBD, the proposed VAR-ICA

the linear reconstruction errd® /s (Eg. 3). Notingy;(t) =

e;(t) * g;(t), we have
approach was adopted. We used both the signal-to-intedere

OR -
82?73-)]3 = E{Ki(t) - 5i(t — 1)} (10)  ratio (SIR) and the signal-to-noise ratio (SNR) to meashee t

separation performance. Suppose thagbrovides the estimate

2 . .
of s,. Its SIR is defined as SIR= 10log,, %

where y;|s,—o Stands for what is at the-th output, when

where K (t) is defined in Eq. 4 (the only difference is thit
in Eq. 4 does not have the time indéx In this way, MFD

provides a method to learn the post-filters in convolutiveSBS

o . . the sources;(t) is zero, soy;|s,—o IS the interference at
We can easily find a rough estimate fer(7), which can ’

o . the i-th output caused by other sources. A high SIR means
be used for initializing the gradient-based method (Eq. 10)

_ . _ _ that the corresponding source is recovered up to the filter
7i(t), the outputs of MBD, have been estimated in the first

o ~ indeterminacy with good performance. In addition, conside
stage. For simplicity, we assume thia{t) have been made of

. ) ) . the recovered signaj;(¢t) as a sum of a scaled version of
unit variance. Let us find the filters;(7) such thaty;(t) =

B ) . the original sources;(t) and some noise, we can define the
e;(t) = g;(t) can best reconstruct a particular observation,

) . . . SNR of theith channel. A high SNR means that both the
denoted byz(t), instead of all observations, with a linear

, i i i .. . interference of other sources and the distortion causedhdy t
instantaneous transformation. That is, we aim to minimize
T ) N . ) filter indeterminacy are small.
Ry, = E{||ze(t) —a%y (0|7} = {2 (t) = 2252 a5; (D117}
wherea = arg, min E,{||z(t) —aly(¢)||*} . Without loss of
generality, we absorb into ¢;(r), or equivalently set; = 1. 9-1. ON Artificially Mixed Convolutive Mixtures

The minimum is achived wheﬁ% =0, ie, We first used the artificially mixed convolutive mixtures of
N speech signals. The three source speech signals, as wiedl as t
Et{ (2 (1) = Z[ej (€)% 55 (0)]) - Gl = 7)} =0. magnitude of their Fourier transforms, are shown in Figure 2
j=1

o ] ) Each signal has 9000 samples. Each entry of the convolutive
Bearing in mind thatj;(¢) are spatially and temporally ap-
] ] _ mixing systemB(z) has a length of 60, and it was generated
proximately independent, finally we can see
randomly from the uniform distributiod{(—c,c). To make

ei(r) = E{xr(O)g:(t — 1)}, B(z) tend to be invertible by a causal system, we decreased



as the time lag increases. The convolutive mixtures, tagettgiven in Figure 5. Comparing their Fourier transforms ad wel
with their Fourier transforms, are shown in Figure 3. as their waveforms to those of the original sources shown in

Figure 2, one can see that the temporal structure of thessurc

5 300 is approximately recovered.
200
mH 0
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s 0 200
2000 4000 6000 8000 0 1 2 3 5
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4 400
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N 200
o
300 >
4 100
o 2 200 - o
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>
100
-5
. . . . . . 0
Fig. 2. Sources used for blind separation of convolutive amed with MFD. 2000 4000 6000 8000 0 1 2 3
time Q (rad)

Left: sources. Right: magnitude of their Fourier transforms.

Fig. 4. Results of MBD by VAR-ICA (Subsection 4.1). Left: me@red

sources. Right: magnitude of their Fourier transforms. Gmoeading SIR’s

200 are 22.84dB, 20.49dB, and19.75dB, respectively.
o
100
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400 ° 300
. ) 200
< 200
5 100
0
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Fig. 3. Convolutive mixtures. Left: mixtures. Right: magnigudf their 100
) -5 0
Fourier transforms. 2000 4000 6000 8000 0 1 2 3
time Q (rad)

We adopted the two-stage method given in Section 4 for

. . Fig. 5. Recovered sources by convolutive BSS with MFD. Leftovered
source separation. Each entry of the deconvolution system

sources. Right: magnitude of their Fourier transforms.
W(z) has a length of 101. The MBD resulig(t) produced
by the first stage are shown in Figure 4. From their Fourier The SIR’s in the three channels &2.84dB, 20.49dB, and
transforms, we can see thgi(t) are approximately white. 19.75dB, respectively, meaning that each source is recovered
In the second stage, we then applied the post-filtgts) to  with very little interference from others. Figure 6 (leffjaws
reduce the temporal distortion in the outputs. We adopt& Flhe scatter plot of each recovered sounggt) versus the
filters with the length 200 foe;(t). e;(t) were learned using PC of [b;;(t) = s;(t)] (¢ = 1,2,3), the contributions of the

the rule Eqg. 10. The final outputg (t) = e;(t) * g;(¢) are corresponding source to all observations. It is almostagit



line. The SNR’s ofy;(t) w.rt. the corresponding PC’s arel2.43dB, 14.12dB, and13.66dB, respectively, which are lower
15.89dB, 17.44dB, and17.18dB, respectively, which are very than those produced by the two-stage method. To see if the
high. This is consistent with Theorem 1, which states that themporal structure of the sources is preserved, we give the
recovered sources with MFD are approximately the PC’s etatter plot of each recovered signal versus the PC’s of the
their contributions to all observations. Figure 6 (rightptp corresponding source to the observations (just shown for- co
the scatter plot ofy;(¢) versus the original source(¢). The pleteness) and the original source; see Figure 7. The atigin
SNR’s of y;(¢) w.r.t. s;(¢) in the three channels afe39dB, sources are recovered with the SNR'96dB, 7.96dB, and
13.35dB, and7.60dB, respectively. 7.50dB, respectively. Compared to the two-stage method, in

this experiment this method caused larger temporal distort

in the recovered sources.

5 ‘,4"
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Fig. 6. Scatter plot of each recovered source by convol@&B& with MFD
versus the PC of the contributions of the source, as well@stiginal source.
Left: recovered source versus the PC of the contributionBebriginal source
) ) Fig. 7. Scatter plot of each recovered source by Parra & Srmeethod
to all mixtures. Corresponding SNR’s at6.89dB, 17.44dB, and17.18dB,
respectively. Right: recovered source versus the original. Corresponding
SNR’s are7.39dB, 13.35dB, and7.60dB, respectively.

[19] versus the PC of the contributions of the source and tiggnal source.
SIR’s in the three channels at@.43dB, 14.12dB, and13.66dB, respectively.
Left: recovered source versus the PC of the contributionhe@torresponding

source to all mixtures. Corresponding SNR’s dr243dB, 14.12dB, and
For comparison, we also used Parra & Spence’s method Dl%]%dB, respectively. Right: recovered source versus the ralgone.

to separate the convolutive mixturéshis method exploits Corresponding SNR'’s are.06dB, 7.96dB, and7.50dB, respectively.
the inherent non-stationarity of the acoustic sources aas u

cross-correlations at multiple times for separation. Asnme

tioned in a recent survey of convolutive BSS methods [5], 8.2. On Real Room Recordings

gives comparatively good performance for real room record-Thanks to the computational efficiency, the proposed two-
ings. The SIR’s of the outputs produced by this method ag?age method for convolutive BSS can be applied to relativel

2Thanks to Stefan Harmeling for sharing the MATLAB source code  large scale problems. We applied this method to the various



mixture signals recorded by Lee et®aFor real room record- Lemma 1:Suppose we are given the random veafior=
ings, the SNR is not measurable due to the unavailability,ds, - .d,)”. Let R, be the mean square error of re-
of the original individual speech or music signals. One casonstructingd from the variabley with the best-fitting linear
evaluate the results by listening to the separated signalsansformation, i.e.R, = min, E{||d — a - y||?}, wherea =
When listening, one needs to pay attention to two aspects;,as,--- ,a,)’. The variabley which gives the minimum
the quality of the separation between different sources afiy is a scaled version of the non-centered principal component
the sound quality of each recovered source. One can see (&) ofd, and ify is constrained to be zero-mean, it is a scaled
the original signals are successfully recovered, and that tversion of the PC ofl.
separation results are clearly better than, or at least ed gd’he proof is given in [6]. Note that this lemma is not straight
as, those separated by [20] and [21], especially for the douforward. In fact, compared to the definition of PCA [22], here
quality (indicating the temporal distortion in the estiedt y is not constrained to be a linear combinationdgfalthough
sources). finally it turns out to be so.
Now we are ready to prove Theorem 1. Sint%z) satisfies
6. CONCLUSION Eq. 5, we can denote hy(¢) +s;(t) the estimate of;(t). Let
In this paper we considered the problem of convolutive BS§;; denote the(z, j)th entry of A. Rysk defined in Eq 1 is
and proposed the minimal filter distortion (MFD) principle Russn
to avoid the filter indeterminacy in the output and improve 9
the separation results. MFD makes the filter distortion in ;Et{xi(t) _Za” () *Sj(t)]}
the estimated mixing procedure as weak as possible, and is: ZEt{ Z { (1) 5 55(8)] — it - 15(8) * sj(t)]} }2
implemented by the least linear reconstruction error cairgt
of the separation system. We showed that the recoveredesourc = Z { Z Ey([bij () = 5;(0)] — gy - [t;(1) * 55(8)])

with this principle is approximately the principal compaohe

+Z Et[ ) # s (t)] = i - [15(t) = si(t)])
k£l

gave a two-stage method for convolutive BSS by combining ([ba(t) * s1(t)] — @ - [5(t) * sl(t)])} }

of the contributions of this source to all observations. We

multichannel blind deconvolution and MFD. In particulas, a

. , ﬁs sj(t) are zero-mean spatially independent stochastic
speech signals usually have a large sample size, we propose

. - sequences, the above equation further becomes
a computationally very efficient two-step approach to penfo

multichannel blind deconvolution in the first stage. The4wo Ryssp = Y Y~ E([bij(t)  s;(t)] — dis; - [t5(t) s; (D)7
stage method for convolutive BSS is computationally appeal o

ing, and its good performance has been demonstrated on b%ﬁww(z) has enough freedo; (t) also has enough freedom.

synthetic data and real room recordings. Consequently, according to Lemma 1, whe(¥) minimizes

Ruyse, one can see thdt;(t) « s;(t)] is the PC of{b;;(t) *

APPENDIX: PROOF OFTHEOREM 1 s;(t)], i=1,---, M, multiplied by a constant. n
Proof: We first present the following lemma, as it will
be used in the proof. REFERENCES
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